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Abstract
Static analysis of multi-staged programs is challenging because the
basic assumption of conventional static analysis no longer holds:
the program text itself is no longer a fixed static entity, but rather
a dynamically constructed value. This article presents a semantic-
preserving translation of multi-staged call-by-value programs into
unstaged programs and a static analysis framework based on this
translation. The translation is semantic-preserving in that every
small-step reduction of a multi-staged program is simulated by
the evaluation of its unstaged version. Thanks to this translation
we can analyze multi-staged programs with existing static analy-
sis techniques that have been developed for conventional unstaged
programs: we first apply the unstaging translation, then we apply
conventional static analysis to the unstaged version, and finally we
cast the analysis results back in terms of the original staged pro-
gram. Our translation handles staging constructs that have been
evolved to be useful in practice (typified in Lisp’s quasi-quotation):
open code as values, unrestricted operations on references and in-
tentional variable-capturing substitutions. This article omits refer-
ences for which we refer the reader to our companion technical
report.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages—
Program analysis
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1. Introduction
Staged programming, which explicitly divides a computation into
separate stages, is a unifying principle for the existing program-
generation systems. Partial evaluation [21, 12], runtime code gen-
eration [16, 32, 26, 28], function inlining, and macro expansion
[35, 18], are all instances of staged computation.

There can be arbitrarily many stages, determined by the nesting
depth of program generations: stage 0 is for conventional non-
staged programs, and a program of stage 0 generates a program of
stage 1 that generates a program of stage 2, and so on. A program
of stage 1 can be brought to stage 0 for execution.

The key aspect of multi-staged languages is to have code tem-
plates (program fragments) as first-class values. Code templates are
freely passed, stored, composed with code of other stages, and exe-
cuted when appropriate. For this reason, multi-staged programming
is also called “meta-programming.”

Multi-staged programming is commonplace in mainstream pro-
gramming. Lisp(or Scheme)’s quasi-quotation system [35, 18] is
a fully fledged multi-staged system that has been evolved to com-
ply with the demands from multi-staged programming practices.
C’s macros and C++’s templates are multi-staged features. C#,
JavaScript, PHP, and Python support a form of multi-staged pro-
gramming, albeit a limited one. MetaOcaml [36] and Template
Haskell [33] are extensions to ML and Haskell respectively to sup-
port multi-staged programming.

However, static analysis of multi-staged programs (in order to,
for example, find bugs or optimize) is mostly unexplored. Aside
from static typing systems such as [25, 4, 13, 31, 3, 37], there are,
as far as we know, no studies on more general and more power-
ful semantic-based static analysis (á la abstract interpretation) for
multi-staged programs.

The primary obstacle is the fact that the basic assumption of
conventional static analysis no longer holds: the program text it-
self is no longer a fixed static entity, but rather a dynamically con-
structed value. Conventional static analysis can finitely estimate the
set of constructed code fragments, but we reach a stalemate after
that. If the program executes the generated code, how can we stat-
ically analyze the execution? The program text to analyze at this



stage is not a usual text but a finitely abstracted representation of
the possibly infinite set of generated code.

Contribution
• As a solution to the problem, we present a semantic-preserving

translation of multi-staged call-by-value programs into un-
staged programs and a static analysis framework based on this
translation. We prove the translation is semantic-preserving in
that every small-step reduction of a multi-staged program is
simulated by the evaluation of its unstaged version.

Thanks to this translation we can analyze multi-staged pro-
grams with existing static analysis techniques that have been de-
veloped for conventional unstaged programs: we first apply the
unstaging translation, then we apply conventional static anal-
ysis to the unstaged version, and finally we cast the analysis
results back in terms of the original staged program.

• We present a framework of safely projecting the static analy-
sis results of unstaged translated version back in terms of the
original staged program. Once the projection’s safety condition
is satisfied, we can use conventional static analysis for the un-
staged language to achieve a static analysis for the multi-staged
language.

• Our semantic-preserving translation handles staging constructs
that have been evolved to be useful in practice (typified in Lisp’s
quasi-quotation): open code as values, unrestricted operations
on references, and intentional variable-capturing substitutions.
This article omits references, for which we refer the reader to
our companion technical report.

We illustrate the problem and our solution using an example
program. In the example, we use Lisp’s quasi-quote syntax [35] for
staging constructs: backquote expression ‘e denotes program e as
data (a program of the next stage), inside which, if any, comma
expression ,e′ replaces itself by the code result from evaluating e′.

1.1 Problem
For example, consider the following two-staged program.

x := ‘0;
repeat

x := ‘(,x + 2)
until cond;
run x

Variable x initially has code ‘0. The repeat statement repeatedly
assigns a new code value to x. The expression ‘(,x + 2) becomes
a code value by plugging x’s current contents into the place of
“,x”. Thus after one iteration x contains ‘(0 + 2), after two
iterations ‘(0 + 2 + 2), and so on. Finally run x evaluates the
x’s code and returns a non-negative even integer.

Now consider statically estimating the above program. In order
to estimate the value of the “run x” expression we must estimate
the set of possible code values that may be assigned to x. Suppose
that the number of iterations of the repeat statement is statically
undecidable. Then flow-insensitive static analysis, for example,
must somehow finitely estimate the set of all possible, infinitely
many code values

{‘0, ‘(0+2), ‘(0+2+2), · · · }.
To finitely approximate the infinite set of code, suppose we use
grammar-based abstraction [7, 29, 5]. Then the set of code for x
would be approximated by a grammar:

S → 0 | S+2.
However, in order to analyze the code run by the “run x” expres-
sion (at least by conventional analyses for unstaged programs), ev-
ery code implied by the grammar must be exposed first; that is,

the grammar must be concretized. Since the concrete image has in-
finitely many code values, such analysis is unrealizable. A different
static analysis technique that can evade such concretization trap is
necessary.

1.2 Solution
As a solution to the problem, we present a three-step approach:
translate, analyze, and project. To make this three-step approach
correct, we prove the translation semantic-preserving: the trans-
lated unstaged version simulates every evaluation step of the orig-
inal staged program. And we show a sound condition for the pro-
jection to be correct, i.e., to be aligned with the correspondence
induced by the translation.

Here we will demonstrate these steps with the motivating ex-
ample just presented. Exact definitions, lemmas and theorems are
presented in Sections 2, 3 and 4.

• Translation: The above example program is translated as

x := λρ.0;
repeat

x := (λh.(λρ.(h ρ)+2)) x
until cond;
(x {})

The translation works as follows.

Code is translated into a function that explicitly takes a
record (for its environment) as an argument:

‘0 7−→ λρ.0

Hence, the run expression is translated into a function ap-
plication:

run ‘0 7−→ (λρ.0){}

The function is applied to an empty record because only
closed code can be run.
Free variables inside a code are translated to record access
expressions. For example,

‘x 7−→ λρ.ρ·x

Code composition ‘(,x + 2) is translated to a function(for
the resulting code)-generating application whose actual pa-
rameter is the part for the code-to-be-plugged expression:

‘(,x + 2) 7−→ (λh.(λρ.(h ρ)+2)) x

The code value of x will be plugged into its corresponding
hole (the place of “h”). The “λρ.(h ρ)+2” stands for the
resulting code. The application “(h ρ)” is for capturing the
code’s, if any, free variables by the current environment.
The evaluation of the unstaged version simulates that of the
original staged program. For example, after one iteration of
the repeat statement, x has λρ.((λρ.0)ρ)+2. After two it-
erations, λρ.((λρ.((λρ.0)ρ)+2)ρ)+2, and so on. These
functions correspond to code values ‘(0+2) and ‘(0+2+2)
after the same numbers of iterations in the original staged
program.

• Analysis: Because the translation removes all the staging fea-
tures, we can apply conventional static analysis techniques to
translated results.

For example, suppose we estimate the values of expressions
by a simple flow-insensitive value analysis with 0CFA. (We
can apply any elaborate static analysis technique, but just for
illustration this simple analysis is sufficient.) We present the



analysis results in set-constraint style [19, 20]. We write Vi or
Vx for the values of expression i and variable x respectively. Let
us first label some expressions including lambdas:

x := λρ1.0;
repeat

x := (λh.(λρ2.(h ρ2)1 + 2)) x
until cond;
(x {})2

The analysis will deduce set constraints as follows. For brevity,
we write “λρi” omitting the body expression for lambdas
(0CFA-closure values).

From the first assignment statement,

Vx 3 λρ1.

From the assignment inside the repeat statement, Vx can also
contain the value of the application “(λh...) x”, i.e., λh’s
body expression’s value, which is λρ2. Hence

Vx 3 λρ2.

The parameter binding in the application “(λh....) x” gives

Vh 3 Vx, hence Vh 3 λρ1 and Vh 3 λρ2.

Application expression “(h ρ2)1” has values of called func-
tions’ body expressions. The called functions would be Vh,
which has λρ1 and λρ2. Thus,

V1 3 0 (* Vh has λρ1 and λρ1’s body’s value is 0 *)
V1 3 V1+2. (* Vh has λρ2 and λρ2’s body’s value is V1+2 *)

Similarly, from the application expression “(x {})2”,

V2 3 0 (* Vx has λρ1 and λρ1’s body’s value is 0 *)
V2 3 V1+2. (* Vx has λρ2 and λρ2’s body’s value is V1+2 *)

The above constraints can be understood as inductive rules
for value sets. For example, the (infinite) sets V1 and V2 are
inductively defined as follows:

V1 → 0 | V1+2
V2 → 0 | V1+2

Thus we can conclude that V1 and V2 consist of all non-negative
even integers.

• Projection: Finally, the analysis results for the unstaged ver-
sion need to be cast back in terms of the original staged pro-
gram. Because code (backquote) expressions are translated into
lambdas, some lambdas in the above example analysis’ results
correspond to the code expressions in the original staged pro-
gram. For example, analysis result Vh for variable h has λρ1

and λρ2 which respectively correspond to code expressions ‘0
and ‘(,x + 2). That is, code to be plugged into the place of
“,x” can be ‘0 and, recursively, ‘(,x + 2).

It is straightforward to keep track of which lambdas in the
unstaged version correspond to which code expression in the
staged original. We can, for instance, assign parameter names
of such lambdas from a unique namespace to identify the cor-
responding code expression, such as, λρi for the lambda trans-
lated from code expression ‘ei of index i.

Regarding the projections, we cannot use arbitrary ones. Ar-
bitrary projections of the static analysis results of the translated
program can have images that fail to qualify as static analysis
results of the original staged program. Projection from abstract
semantics of the translated program to that of the subject pro-
gram must be a safe approximation of its concrete counterpart
(projection from concrete semantics of the translated program

to that of the subject program). Section 4 presents the formal-
ization of this condition and an analysis example.

Comparisons

• Translation: Davies and Pfenning’s unstaging translation [13]
works only for closed code. Their translation does not sup-
port open code and intentional variable-capturing substitution
at stages > 0 (“unhygienic” macros). This feature, which may
be unacceptable in a purely functional language, has long been
used in practice (for example by Lisp’s quasi-quote program-
mers) for efficiency programming convenience. Kameyama
et.al [23]’s translation supports open code but they do not pro-
vide an observational equivalence; hence it is not adequate for
our purpose: a round-about static analysis approach for multi-
staged programs.

Our unstaging translation is a refinement of [1]. We prove
only two kinds of administrative reductions suffice whose ex-
haustive application reaches the admin-normal form. We also
define an inverse translation that converts expressions in the
admin-normal form back to the original staged expression.

• Static analysis: Most static analyses for multi-staged programs
are string analyses for programs that generate code as strings,
but they are limited to estimate only the shape, not the seman-
tics, of generated code by using a grammar [7, 29, 5] or the
parsing stack [15]. Such string analyses do not analyze the se-
mantics of the generated code string.

Multi-staged static type systems [13, 37, 25, 40] and their
inference algorithms can be considered sound static analyses,
but extending them for analyzing other behavior than types
(á la effect type systems [27, 22, 39]) is also constrained by
the aforementioned infinite-concretization trap. Any extension
to estimate other properties than types is limited to those that
can proceed without analyzing the semantics of the generated
code. Existing multi-staged static type systems can evade the
infinite concretization trap because typing the execution of the
generated code (for expression such as run e) does not have to
analyze the generated code itself but can just pick up the type
from the generated code’s type.

1.3 Organization
Section 2 defines the subject call-by-value multi-staged language
λS and the target unstaged record language λR. Section 3 defines
and proves semantic-preservation of the unstaging translation from
λS to λR. Section 4 presents a condition for safe projection. Sec-
tion 5 discusses related works. Section 6 concludes.

2. Languages
In this section we give the formal definitions of the subject staged
language λS and the target record language λR. For each, we
present the syntax, operational semantics and the type system.

2.1 Multi-Staged Language λS

The language λS is a typed, call-by-value λ-calculus with staging
annotations. It is based on λsim

open [25], simplified by removing
hygienic code composition (i.e. λ∗), mutable reference, and the lift
operation. Also, the unbox operator is restricted to 1 stage. In this
work our focus is not on polymorphism. Thus, we omit let-bindings
from the syntax; we use them in the examples as a syntactic sugar
for application.



Definitions
Value0 v0 ::= i | λx.e | fix f x.e | box v1

Valuen (n > 0) vn ::= i | x | λx.vn | vnvn | fix f x.vn

| box vn+1 | unbox vn−1 (n > 1)
| run vn

Operational Semantics (n ≥ 0)

(APP)
e1

n−→ e′1

e1 e2
n−→ e′1 e2

e
n−→ e′ v ∈ Valuen

v e
n−→ v e′

(λx.e) v
0−→ [x

07→v]e

(fix f x.e) v
0−→ [x

07→v][f
07→fix f x.e]e

(BOX)
e

n+1−→ e′

box e
n−→ box e′

(RUN)
e

n−→ e′

run e
n−→ run e′

v ∈ Value1 FV 0(v) = ∅

run (box v)
0−→ v

(UNB)
e

n−→ e′

unbox e
n+1−→ unbox e′

v ∈ Value1

unbox (box v)
1−→ v

(ABS)
e

n+1−→ e′

λx.e
n+1−→ λx.e′

(FIX)
e

n+1−→ e′

fix f x.e
n+1−→ fix f x.e′

Figure 1. Operational Semantics of λS .

Syntax
Variable x, y, f ∈ VarS

ExprS e ::= i | x | λx.e | e e | fix f x.e
| box e | unbox e | run e

The syntax of λS is given above. The language contains constants,
variables, lambda abstraction, application, and the fixpoint operator
fix. Finally, there are staging annotations: box is used to define
code templates. unbox is the escape operator that defines a “hole”
inside a code template which is filled in with another code template.
box and unbox operators can be arbitrarily nested. run executes a
code template.

Operational Semantics
λS has a small-step, call-by-value, operational semantics. Evalua-
tion rules of the language are in Figure 1. The evaluation e

n−→ e′

has the meaning that “the expression e is evaluated to e′ at stage n.”
Values are expressions that cannot be reduced further. Values are

defined for all stages. At stage 0, values are constants, functions and
code templates. A code template is a frozen expression within a box
annotation. Inside code templates, holes denoted by the unbox are
filled in by evaluating the unboxed expression to a code template.
In other words, code templates are composed using the unbox
operator. Only stage-1 holes can be filled in. Once all the holes
are filled, a code template becomes a box-value. A code template
can be evaluated at stage 0 by run. Code to run must not have
any free variable. FV 0(e) in the (RUN) rule denotes the set of
free variables in stage-0 expression e, to which none of e’s sub-
expression of stage > 0 contributes.

λS extends lambda calculus conservatively. At stage 0, (APP) is
the same as the traditional substitution-based call-by-value seman-
tics. Alpha conversion and beta reduction are available at stage-0.

(CONt) Γ0 . . . Γn `S i : ι

(VARt)
Γn(x) = T

Γ0 . . . Γn `S x : T

(ABSt)
Γ0 . . . Γn + {x : T1} `S e : T2

Γ0 . . . Γn `S λx.e : T1 → T2

(FIXt)
Γ0 . . . Γn + {x : T1}+ {f : T1 → T2} `S e : T2

Γ0 . . . Γn `S fix f x.e : T1 → T2

(APPt)
Γ0 . . . Γn `S e1 : T1 → T2 Γ0 . . . Γn `S e2 : T1

Γ0 . . . Γn `S e1 e2 : T2

(BOXt)
Γ0 . . . Γn, Γ `S e : T

Γ0 . . . Γn `S box e : �(Γ B T)

(UNBt)
Γ0 . . . Γn `S e : �(Γn+1 B T)

Γ0 . . . Γn, Γn+1 `S unbox e : T

(RUNt)
Γ0 . . . Γn `S e : �(∅ B T)

Γ0 . . . Γn `S run e : T

Figure 2. Type System of λS .

Type System
Figure 2 shows a monomorphic type system for λS . A polymorphic
type system is also available [25]. Types in λS are defined as below.

TypeS T ::= ι | T→ T | �(Γ B T)

Type EnvironmentS Γ ∈ VarS
fin→ TypeS

We use T to denote type terms, ι for base types, T→ T for function
types, �(Γ B T) for code template types, Γ for type environments.
A code template is given a box-type �(Γ B T) with the meaning
that “the code template will evaluate to a value of type T if put in a
context that provides the environment Γ.” The type environment
Γ in the box-type �(Γ B T) contains the types of the unbound
variables in the code template.

A type environment Γ is a mapping from variables to types.
Γ + {x : T} is a function update operation that defines a function
as follows: (Γ + {x : T})(x) = T and (Γ + {y : T})(x) = Γ(x)
if x 6= y. A typing judgment has the form Γ0 . . . Γn `S e : T with
the meaning that “a stage-n expression e, under type environments
Γ0 . . . Γn, has type T.” Γ0 . . . Γn is a sequence of type environ-
ments. Each type environment corresponds to a stage where Γn is
the current (i.e. most recent) type environment. For a proof of the
soundness of this type system and its let-polymorphic extension,
see [25].

2.2 The Record Calculus λR

The language λR is a λ-calculus with record operations. As the
target language of our translation, it is sufficient for the record ex-
pression to have only variables and values. As opposed to λS , we
include let-bindings in λR. This is to be able to syntactically dis-
tinguish several λR expressions during inverse translation (Section
3.3). The language is still monomorphic.

Syntax

Variable ρ ∈ VarP (record variables)
h ∈ VarH (hole variables)
x, y, f ∈ VarX = VarS (ordinary variables)
w ∈ VarR = VarX ∪VarP ∪VarH

Label x ∈ Label = {x|x ∈ VarX}
(ordinary variables in typewriter font)



Operational Semantics

(APPR)
e1

R−→ e′1

e1 e2
R−→ e′1 e2

e
R−→ e′

v e
R−→ v e′

(λw.e) v
R−→ [w 7→v]e

(fix f x.e) v
R−→ [x 7→v][f 7→fix f x.e]e

(LETR)
e1

R−→ e′1

let w = e1 in e2
R−→ let w = e′1 in e2

let w = v in e
R−→ [w 7→v]e

(ACCR) vr ·x
R−→ vr(x)

Record Lookup

vr(x) =


v if vr = v′r+{x=v}
v′r(x) if vr = v′r+{y= } and x 6= y

Figure 3. Operational Semantics of λR.

ExprR e ::= i | w | λw.e | e e | fix f x.e
| r | r·x | let w = e in e

ValueR v ::= i | λw.e | fix f x.e | vr

Record ValueR vr ::= {} | vr+{x=v}

RecordR r ::= {} | ρ | r+{x=x} | r+{x=v}

The record language λR has constants (i), variables (x), lambda ab-
stractions, applications, a fixpoint operator fix, and let-expressions.
As for the record operations there are empty records ({}), record
variables (ρ), and the record update operation r+{x= }. For field
names (or labels) in records, we use variables written in teletype
font.

We separate variables into three disjoint sets: ordinary variables
VarX (which are the same as variables of λS ), record variables
VarP , and hole variables VarH . This syntactic distinction makes
our presentation of the inverse translation in Section 3.3 easier.
The operational semantics does not need to make a distinction; all
variables are treated uniformly.

Operational Semantics
λR has a small-step, call-by-value operational semantics. The eval-
uation e

R−→ e′ means that “the expression e evaluates to expres-
sion e′”. The operational semantics of λR is mostly standard. Eval-
uation rules and the definition of values are given in Figure 3.

Type System

A monomorphic type system for λR is given in Figure 4. Types
are defined as follows:

TypeR T ::= ι | T→ T | Tr
Record Type Tr ∈ Label

fin→ TypeR

Type EnvironmentR Γ ∈ VarR
fin→ TypeR

There are base type and function types as usual. A record type is a
mapping from field labels to types. Type environments are similar
to those for λS .

(CONtR) Γ `R i : ι

(VARtR)
Γ(w) = T

Γ `R w : T

(ABStR)
Γ + {w : T1} `R e : T2

Γ `R λw.e : T1 → T2

(FIXtR)
Γ + {x : T1}+ {f : T1 → T2} `R e : T2

Γ `R fix f x.e : T1 → T2

(APPtR)
Γ `R e1 : T1 → T2 Γ `R e2 : T1

Γ `R e1 e2 : T2

(LETtR)
Γ `R e1 : T1 Γ + {w : T1} `R e2 : T2

Γ `R let w = e1 in e2 : T2

(EMPtR) Γ `R {} : ∅

(UPDtR)
Γ `R r : Tr Γ `R e : T

Γ `R r+{x=e} : Tr + {x : T}

(ACCtR)
Γ `R r : Tr Tr(x) = T

Γ `R r ·x : T

Figure 4. Type System of λR.

3. Translation
In this section we present how staged expressions can be repre-
sented with record calculus expressions.

We begin with an observation: Boxed expressions are not exe-
cuted – they remain frozen – until they are run. This notion is very
similar to closures; closures are not executed until they are applied
to an operand. This observation hints that boxed expressions can be
represented as functions.

The second observation is that when an unboxed expression is
replaced with a code template (see rule UNB in the operational se-
mantics), the free variables in the code template may be captured by
the surrounding expression. In other words, the surrounding boxed
expression provides the code template with an environment that
carries the “meaning” of the free variables in the code template.
Combining the two observations, we can then represent a boxed
expression as a function whose parameter is an environment. Pro-
viding an environment to a boxed expression (as in the case of un-
boxing) is then nothing but a function application where the opera-
tor is the boxed expression and the operand is the environment.

The next question is how to represent environments. The answer
is trivial: as records. A variable occurrence then becomes a lookup
in the current environment (i.e. record), and a binding is an update
to the current environment (i.e. record).

Our translation at the type level translates code expression of
type �(Γ B T) into function expression of type Γ→ T, where Γ is
a record type for Γ and T is a translated type for T.

To give a few examples, consider the expression box x. It can
be represented as λρ.ρ·x, where the value of x is being obtained
from the environment ρ. The expression

box (let x = 42 in unbox (box x))

can be represented as

λρ′.(λρ.ρ·x){x = 42}.

Note how the unbox expression becomes a function application.
As a special case, run becomes an application where the argument



box (. . . unbox ( · ) . . . unbox ( · ) . . .)| {z }
(λh1.(λh2.(λρ. . . . h1 ρ . . . h2 ρ . . .))( · ))( · )

� �
?

� �
?

Figure 5. Illustration of the translation of a box expression with
two unboxes.

is the empty environment, because only closed expressions can be
executed. For example, run (box 42) becomes (λρ.42){}.

To illustrate how variable capturing is handled, let us now take
the following example.

let a = box x
b = box (λx.λy.(unbox a)+y)

in (run b) 1 1

In the example, the value of b will be box (λx.λy.x+y). Note how
the variable x, which was free in box x, is captured. Continuing the
evaluation, run b will reduce to the function λx.λy.x+y, resulting
in a final value of 2.

Based on the translation described, the example above is trans-
lated as below:

let a = λρ.ρ·x
b = λρ.λx.λy.(a (ρ + {x = x, y = y}))+y

in (b {}) 1 1

Both box expressions are converted to a function that takes as
parameter an environment, ρ. In the first line, the occurrence of x is
free. So it is translated to a lookup operation in ρ. The occurrence
of y in the second line is not free, hence it is left as it is. The unbox
expression becomes a function application where the operand is the
environment ρ updated with the bindings of x and y. Finally, the
run expression is translated to an application to the empty record.
When evaluated, the translation reduces to 2, too.

Order of Evaluation
In the staged calculus, unbox expressions inside box are evaluated
to code templates. When translated to record calculus as discussed
above, however, the contents of a box become guarded under a
lambda abstraction and hence are not evaluated. Consider the fol-
lowing example

box (unbox ((λx.x) box 1))
0−→ box (unbox (box 1))
0−→ box 1

The translation of box (unbox ((λx.x) box 1)) would be
λρ.((λx.x) λρ.1)ρ, which is already a value and does not evaluate
further. So, the order of evaluation (in the call-by-value semantics)
is perturbed by the translation. This would incur a serious problem
in the presence of expressions with side-effects.

To preserve the order of evaluation, the translation has to move
the expression inside unbox to the outside of the enclosing box,
as illustrated in Figure 5. To do this, every unbox expression is
replaced with a hole variable h and a context in the form of
(λh.[·]) e, where e is the translation of the unboxed expression,
is created so that the inside of the context can be filled in with
the translation of the enclosing box. Because e is at the argument
position of a function, the call-by-value semantics of the record
calculus evaluates e first and then handles the rest. The correct
translation of the example above is (λh.λρ.h ρ) ((λx.x) λρ.1).

Our translation to preserve the order of evaluation is similar to
Davies and Pfenning’s [13]. They suggested the translation from

the implicit modal language Mini-ML�, which is similar to λS ,
to the explicit modal language Mini-ML�

e . Their target language
is still staged whereas ours is the record language with no staging.
Kameyama et.al [23] also developed a similar translation that trans-
lates 2-staged programs to System F with tuples. More details on
the related work are given in Section 5.

Admin Reductions
Let us examine the evaluation of the expression above in small
steps.

(λh.λρ.h ρ) ((λx.x) λρ.1)
R−→ (λh.λρ.(h ρ)) (λρ.1)
R−→ λρ.((λρ.1) ρ)

The final value, λρ.((λρ.1) ρ), is not directly the translation of
box 1; there is still a reducible term, (λρ.1) ρ, inside a lambda. This
residual term is seen because of the following fact: In the staged
calculus, when an unbox expression evaluates to a code template,
the code template immediately (i.e. in one step) replaces the unbox
expression. On the other hand, in the record calculus, the unbox ex-
pression becomes an argument to a function, in which the argument
is applied to an environment. Passing the argument to the function
takes one step of evaluation (i.e. substitution). The application of
the argument to the environment still remains, and is, in fact, the
residual term that needs to be reduced via further action. This kind
of a reduction is called an “admin reduction”. Admin reductions
simplify the record calculus terms and bring them to a form that is
the direct result of a translation. In general, beta-reduction of an ap-
plication where the operator is a lambda expression and the operand
is a record is an admin reduction; this reduction may happen any-
where, including inside lambda abstractions. The example above is
admin-reduced as follows, where the admin-reducible term is un-
derlined. Note that the resulting term, λρ.1, is directly the transla-
tion of box 1.

λρ.((λρ.1) ρ)
A−→ λρ.1

There are two kinds of admin reductions. The first is the one
explained above. The second is related to variable capture. Recall
that when a code template replaces an unbox expression, the free
variables are captured. A free variable becomes a lookup expression
in the current environment after the translation. Such lookups need
to be resolved (after a hole replacement). This is done by the second
kind of admin reduction. Figure 6 shows a trace that belongs to the
first example given in this section. Both kinds of admin reductions
are used. Admin-reducible terms are again underlined. Figure 7
shows the evaluation of the original staged expression. Note that
any term in Figure 7 translates to a term in Figure 6.

The formal definitions of the translation and admin reductions
are given in the next section.

3.1 Translation Definition
The translation is presented in Figure 8. A translation judgment has
the form R ` e 7→ (e, K) with the meaning that “a λS expression
e, under environment stack R, translates to the λR expression e and
the context stack K.”

An environment is a subset of a record expression that associates
fields to variables. It keeps the information of which variables have
been bound so far. Each stage has a corresponding environment,
held in the environment stack. Hence, the translation of a stage-
n expression involves a stack of length n + 1. The rightmost (or
topmost) environment in the stack corresponds to the current stage.

An expression that binds a variable updates the environment
with the new binding. Lambda abstraction and fix are such ex-



let a = λρ.ρ·x
b = (λh.λρ.λx.λy.(h (ρ + {x = x, y = y}))+y)a

in (b {}) 1 1
R−→
let b = (λh.λρ.λx.λy.(h (ρ + {x = x, y = y}))+y)(λρ.ρ·x)
in (b {}) 1 1
R−→
let b = λρ.λx.λy.((λρ.ρ·x) (ρ + {x = x, y = y}))+y
in (b {}) 1 1
A−→
let b = λρ.λx.λy.(((ρ + {x = x, y = y})·x))+y
in (b {}) 1 1
A−→
let b = λρ.λx.λy.x+y
in (b {}) 1 1
R−→ ((λρ.λx.λy.x+y) {}) 1 1
R−→ (λx.λy.x+y) 1 1
R−→ (λy.1+y) 1
R−→ 1+1
R−→ 2

Figure 6. Reduction trace of the example expression after the
unstaging translation. Admin-reducible terms are underlined.

let a = box x
b = box (λx.λy.(unbox a)+y)

in (run b) 1 1
0−→

let b = box (λx.λy.(unbox (box x))+y)
in (run b) 1 1

0−→
let b = box (λx.λy.x+y)
in (run b) 1 1

0−→ (run (box (λx.λy.x+y))) 1 1
0−→ (λx.λy.x+y) 1 1
0−→ (λy.1+y) 1
0−→ 1+1
0−→ 2

Figure 7. Reduction trace of the example staged expression. Any
term in this trace translates to a term in Figure 6.

pressions (see rules TABS and TFIX). A box expression starts a
new environment by putting a fresh environment variable on top of
the environment stack. Dually, unbox chops off the topmost envi-
ronment from the stack.

The notion of a context was informally discussed in the previous
section. A context ((λh.[·]) e) corresponds to unbox e where e
is the translation of the unboxed expression e. Contexts are used
for putting the unboxed expression outside their enclosing box
expressions so that the evaluation order is preserved. The variable
that a context binds, that is h, is a fresh variable that replaces the
original unbox in the translation. Note that there may be multiple
unbox expressions at a particular stage, e.g. box (unbox (e1) +
unbox (e2)). Therefore, contexts are defined recursively, as in
((λh.κ) e). This way, a context is able to keep information about
multiple unbox expressions in a stage, while still preserving their
relative order of evaluation. Also note that unbox expressions can
be nested, e.g. box (box (unbox (unbox e))). The translation,

Definitions
Environment r ::= {} | ρ | r+{x=x}
Environment Stack R ::= ⊥ | R, r

Context κ ::= ((λh.[·]) e) | ((λh.κ) e)
Context Stack K ::= ⊥ | K, κ

Environment Lookup

r(x) =

8<: x if r = r′+{x=x}
r′(x) if r = r′+{y= } and x 6= y
ρ·x if r = ρ

Term Translation
(TCON) R ` i 7→ (i,⊥)

(TVAR) R, r ` x 7→ (r(x),⊥)

(TABS)
R, r+{x=x} ` e 7→ (e, K)

R, r ` λx.e 7→ (λx.e, K)

(TFIX)
R, r+{x=x}+{f=f} ` e 7→ (e, K)

R, r ` fix f x.e 7→ (fix f x.e, K)

(TAPP)
R ` e1 7→ (e1, K1) R ` e2 7→ (e2, K2)

R ` e1 e2 7→ (e1 e2, K1 ./ K2)

(TBOX)
R, ρ ` e 7→ (e, (K, κ))

R ` box e 7→ (κ[λρ.e], K)
new ρ

R, ρ ` e 7→ (e,⊥)

R ` box e 7→ (λρ.e,⊥)
new ρ

(TUNB)
R ` e 7→ (e, K)

R, r ` unbox e 7→ (h r, (K, (λh.[·]) e))
new h

(TRUN)
R ` e 7→ (e, K)

R ` run e 7→ (let h = e in (h{}), K)
new h

Context Stack Merge Operator
⊥ ./ K = K
K ./ ⊥ = K

(K1, κ1) ./ (K2, κ2) = (K1 ./ K2), (κ1[κ2])

Figure 8. Translation from λS to λR.

therefore, produces context stacks instead of a single context. Each
context in the stack corresponds to a stage. The contexts in a stack
are positioned in the following order: The context of the stage that
is immediately lower than the current stage is positioned at the
rightmost side; stages go lower (i.e. get closer to 0) as we go left.
The stage closest to 0 is located at the leftmost side of the stack.

New contexts in the translation are populated by unbox ex-
pressions (see rule TUNB). A fresh hole variable is also gener-
ated as a placeholder for the unboxed expression. The translation
of a box expression pulls the topmost context from the stack and
puts the translated expression inside this context. The translation
of expressions with no subexpressions (e.g. variables) results in
empty context stacks, since there are no unbox contained within
the expression. The translation of expressions with single subex-
pressions (e.g. abstraction) simply threads the context stack that
results from the translation of the subexpression. The translation
of expressions with more than one subexpression (e.g. application)
merges the context stacks resulting from the translation of subex-
pressions. A context stack merge operation respects the order of
appearance, hence serves the preservation of the order of evalua-
tion.

When discussing the translation informally, we converted run
to a function application, but in the formal definition we translate
to a let-expression. The difference is merely syntactic; we want to



be able to distinguish translations of run from unbox so that the
inverse translation can properly translate expressions back.

3.2 Semantics Preservation
In this section we formally make the connection between semantics
of λS and λR through the translation. For complete proofs for lem-
mas and theorems, we refer the reader to the companion technical
report [6].

Recall that a translation yields a pair of an expression and a
context stack. This pair can be constructed into a single expression
using a context closure operation:

Definition 1. (Context Closure) Let e be a λR expression and K
be a context stack. The context closure K(e) is defined as follows.

K(e) =


K′(κ[e]) if K = (K′, κ)
e if K = ⊥

In Section 3 we discussed the need for admin reductions; here
we give the formal definition:

Definition 2. (Admin Reduction) Administrative reduction of an
expression is a congruence closure of the following two rules:

(APP) (λρ.e) r
A−→ [ρ 7→r]e

(ACC)
r 6= ρ

r·x A−→ r(x)

The definition of administrative reductions also extends to contexts
and context stacks.

Note that an administrative reduction may happen anywhere, even
under lambdas. Also note that an admin reduction is “safe” to per-
form, in the sense that no side-effecting or non-terminating expres-
sion is eliminated by an admin reduction. It is also straightforward
to check that admin reductions terminate.

Definition 3. (Admin-normal form) An expression e is said to be
in admin-normal form iff there does not exist any e′ such that
e

A−→ e′.

An important observation is that a translated expression does
not contain any admin-reducible terms:

Lemma 1. Let e be a λS expression such that R ` e 7→ (e, K)
for some R. Then, K(e) is in admin-normal form.

Proof. By structural induction on e [6].

Notation 1. The Kleene closure of admin reductions is denoted as
A∗
−→.

Notation 2. We use
R;A∗
−→ to denote sequential application of one

step of eager evaluation followed by exhaustive administrative re-
ductions. Exhaustive admin reductions are those that bring an ex-
pression to the admin-normal form.

Next, we show the relation between the operational semantics of
λS and λR: Given a λS expression e, we can first translate e, then
evaluate it in record language semantics followed by application of
admin reductions, and we will have obtained the translation of the
expression that e evaluates to in the staged semantics. Furthermore,
the admin reductions that we apply are exhaustive; we do not need
to worry about oversimplification. This relation is formally stated
in Theorem 1 and illustrated in Figure 9.

Two properties are critical to prove the semantic preservation.
First, the translation preserves the substitution operation.

e
n //_

��

e′_

��
e e′

=⇒ e
R;A∗

// e′

Figure 9. Relation between λS and λR operational semantics.

Type Term

ι 7→ ι
T1 7→ T1 T2 7→ T2

T1 → T2 7→ T1 → T2

Γ 7→ Tr T 7→ T

�(Γ B T) 7→ Tr → T

Record Type Term
Γ 7→ Tr T 7→ T

Γ + x : T 7→ Tr + {x : T}
∅ 7→ ∅

Figure 10. Type Translation.

Lemma 2. (Substitution Preservation) Assume e1 is a stage-n λS
expression, e2 is a stage-0 λS expression with no free variables.
Let r0 . . . rn ` e1 7→ (e1, κp . . . κ1) for p ≤ n and {} ` e2 7→
(e2,⊥) where r0 is such that r0(x) = x for some variable x. Then

• If n = 0 then r0 ` [x
07→e2]e1 7→ ([x 7→e2]e1,⊥).

• If n > p then r0 . . . rn ` [x
n7→e2]e1 7→ (e1, κp . . . κ1).

• If n = p then r0 . . . rn ` [x
n7→e2]e1 7→ (e1, (κ

′
p, κp−1 . . . κ1))

where κ′p = [x 7→e2]κp.

Proof. By structural induction on expression e1 [6].

Second, the translation preserves the variable-capturing reduc-
tion which happens in λS because of open code.

Lemma 3. (Variable-Capturing Preservation) Assume e is a stage-
n λS expression and S is a substitution where S = [ρ 7→ r]. Let
r0 . . . rn ` e 7→ (e, K) and S(r0 . . . rn) ` e 7→ (e′, K′). Then,

Se
A∗
−→ e′ and SK

A∗
−→ K′.

Proof. By structural induction on e [6]. The substitution operations
(S(r0 . . . rn), Se, and SK) are the usual compositional, homomor-
phic operations.

Finally we give the simulation theorem that shows our transla-
tion is semantics-preserving. An illustration of this theorem is given
in Figure 9.

Theorem 1. (Simulation) Let e be a stage-n λS expression with
no free variables such that e

n−→ e′. Let R ` e 7→ (e, K) and

R ` e′ 7→ (e′, K′). Then K(e)
R;A∗
−→ K′(e′).

Proof. By induction on the evaluation e
n−→ e′ using Lemma 1,

Lemma 2 and Lemma 3. For complete proof, see [6].

Type Translation
A relation between the two languages exists not only between their
operational semantics but also between their type systems. The
translation preserves the typability of an expression: If a λS ex-
pression is typable in the λS type system, its translation is typable
in the λR type system. The type translation is a straightforward
conversion that converts all the box-types in a λS type to arrow
types. (Figure 10)

Theorem 2. (Type Correctness) Let e be a stage-0 λS expression
with no free variables such that ∅ `S e : T. If R ` e 7→ (e,⊥)
then ∅ `R e : T.



Definitions
Hole Environment H : VarH → ExprR

Term Translation
(IVAR) H ` x 7→ x

(IACC) H ` e·x 7→ x

(IABS)
H ` e 7→ e

H ` λx.e 7→ λx.e

(IABS)
H ` e 7→ e

H ` fix f x.e 7→ fix f x.e

(IAPP)
H ` e1 7→ e1 H ` e2 7→ e2 e1 6= λh.e e2 /∈ RecordR

H ` e1 e2 7→ e1 e2

(ICTX)
H ∪ {h : e′} ` e 7→ e

H ` ((λh.e) e′) 7→ e

(IBOX)
H ` e 7→ e

H ` λρ.e 7→ box e

(IUNB)
H ` H(h) 7→ e

H ` h r 7→ unbox e

(IRUN)
H ` e 7→ e

H ` let h = e in (h {}) 7→ run e

Figure 11. Inverse Translation from λR to λS .

For a proof of this theorem, see [1, 38].

3.3 Inverse Translation
We have so far seen how a λS expression can be translated to a
λR expression and how the two expressions relate. We can also
translate a λR expression back to λS . With such an inverse trans-
lation, we can not only translate a λS expression and evaluate the
result using record language semantics as we saw in the previous
section, but also translate the evaluation result back to λS without
ever having to evaluate the original λS expression.

The definition of the inverse translation is in Figure 11. An
inverse translation judgment is in the form H ` e 7→ e with the
meaning that “under the hole environment H , the λR expression e
translates to the λS expression e.”

A hole environment is a function that associates hole variables
with expressions. Recall that a forward translation replaces an
unbox expression with a hole variable h and moves the unboxed
expression outside the enclosing box. A hole environment maps
the hole variable to the expression that was moved out so that we
can convert the hole variable back to an unbox expression. This is
done in the (IUNB) rule. Note that in inverse translation we have a
single environment as opposed to having a stack of environments
(and stack of contexts) in the forward translation. There are two
reasons for this: (1) There is no notion of stages in λR. (2) All the
hole variables are freshly generated by the forward translation and
they are used only once each in unique locations. Hence, it suffices
to use a single function to keep the information about hole variables
and associated expressions.

The key points of the inverse translation are the following:

• Record lookup expressions are converted back to variables (rule
IACC).

• A lambda abstraction that has a record variable as its parameter
is converted to a box expression (rule IBOX).

e
n // e′ =⇒

e_

��

e′OO

_
e

R;A∗
// e′

Figure 12. Given a λS expression e, we can evaluate its translation
in the λR semantics and then translate the result back to obtain the
result that we get from evaluation of the original expression e.

• A function application where the operator is a hole variable is
converted to an unbox expression (rule IUNB).

• A new mapping is added to the hole environment when trans-
lating a function application where the operator is a lambda ab-
straction whose parameter is a hole variable (rule ICTX).

Note that the rules of inverse translation are not ambiguous;
each rule matches a unique syntactic category. For instance, even
though (IABS) and (IBOX) are both defined for lambda abstrac-
tions, in the former, the bound variable is a regular variable and in
the latter it is a record variable. These two variables come from dis-
joint sets and are syntactically differentiable. Similarly, hole vari-
ables are syntactically distinguishable. This distinction of variables
helps us have an unambiguous coverage of expressions.

To make the connection between forward translation and inverse
translation, we first define how to interpret context stacks as hole
environments.

Definition 4. (From Contexts to Hole Environments) Let K be a
context stack. The operation K defines a hole environment in the
following way:

K =


∅ if K = ⊥
K′ ∪ κ if K = K′, κ

κ =


{h : e} if κ = (λh.[·]) e
κ′ ∪ {h : e} if κ = (λh.κ′) e

The lemma below states that we can translate a λS expression
to λR and then translate the result back to λS to obtain the same
expression.

Theorem 3. (Inversion) Let e be a λS expression and R be an
environment stack. If R ` e 7→ (e, K), then H ` e 7→ e for any H
such that K ⊆ H .

Proof. By induction on the structure of e [6].

Combining Theorem 1 with Theorem 3 gives a stronger result:
not only that the evaluation of translated λR-program simulate
every reduction step of the original λS -program but also that every
intermittent λR-expression occurring in the simulation steps can
be projected back to its corresponding λS -expression of the λR-
evaluation (Figure 12). The existence of such inversion facilitates
our development of the projection step, which is the topic of the
next section.

4. Projection
Among our three-step (translate, analysis, and project) approach
to analyze multi-staged programs, the first two steps have sound
foundations. Since we have proven that the translation is semantic-
preserving, statically analyzing translated programs can replace an-
alyzing the original subject programs. The analysis for the trans-
lated unstaged programs can be proven correct using a conventional
static analysis framework such as abstract interpretation [9, 10].

The last step, projecting the analysis results back in terms of the
original staged program, needs a condition for its safety. Arbitrary



projections can have images that fail to qualify as static analysis
results of the original staged program. For example, staged program
run ‘0 is translated into an application (λρ.0){}, and the binding
of the empty record to variable ρ has no counterpart in the original
staged program’s semantics. Hence, a projection whose image is
only such an extra binding effect is clearly not a static analysis
result of the original program.

A noticeable point about the safety of projections is that the
safety is defined in reference to a static analysis of the original
staged program. Checking whether the projection image qualifies
to be a static analysis result of the original staged program needs the
static analysis definition. This requirement is not a dilemma; static
analysis can always be defined, though it may not be realizable.

A sufficient condition for projection safety is easy to see once
we model static analysis in the abstract interpretation framework [9,
10]. Let e be a multi-staged program and e be its translated un-
staged version. Let [[e]] ∈ DS and [[e]] ∈ DR be their concrete
semantics over concrete domains DS and DR respectively. Static
analyses of e and e are computations of abstract (approximate) ver-
sions of the concrete semantics. Let ˆ[[e]] ∈ D̂S and ˆ[[e]] ∈ D̂R be
the abstract semantics. Each pair of concrete and abstract domains
is Galois-connected by an adjoined pair of abstraction (α and α)
and concretization functions (γ and γ). A concrete (resp. abstract)
projection π (resp. π̂) is a monotonic function from DR to DS

(resp. D̂R to D̂S). The following diagram summarizes the setting:

e_

��

[[e]] ∈ DS −→←−α
γ

D̂S 3 ˆ[[e]]

e [[e]] ∈ DR

π

OO

−→←−α
γ

D̂R 3 ˆ[[e]]

π̂

OO

A safety condition for the abstract projection π̂ is as follows.

Theorem 4. (Safe Projection) Let e and e be, respectively, a staged
program and its translated unstaged version. If [[e]] v π[[e]] and
α ◦ π ◦ γ v π̂ then α[[e]] v π̂ ˆ[[e]].

Proof. By the first condition and the abstraction function α’s mono-
tonicity (because of the Galois connection), α[[e]] v (α ◦ π)[[e]],
which, by the monotonicity of α and π, and by the correctness
of ˆ[[e]], is v (α ◦ π ◦ γ) ˆ[[e]], which, by the second condition, is
v π̂ ˆ[[e]].

These conditions are not particularly constraining. Concrete
projection π that satisfies the first condition [[e]] v π[[e]] always
exists. Such π is the inverse translation function in Section 3.3 com-
posed with an eraser function that first filters out from [[e]], if any,
extra things outside [[e]]. Such composition satisfies the condition
because (1) [[e]] always includes [[e]] since the translated program e
simulates every reduction step of e and (2) by Theorem 3. The sec-
ond condition is analogous to the usual correctness condition for an
abstract operation in the abstract interpretation framework.

Once the above conditions are satisfied, we can concentrate on
defining an abstract analysis of λR programs without considering
staged constructs. Analyzing the translated program and applying
the abstract projection π̂ to the analysis result achieves a safe
analysis result of the original staged program.

4.1 Example
Consider the following staged program e. As in Section 1 we use
Lisp’s quasi-quote syntax [35] for staging constructs.

let x = ‘0 (* indexed as ρ1 *)
y = ‘(,x + 2) (* indexed as ρ2 *)

in run y

The translated version e, is

let x = λρ1.0
y = (λh.(λρ2.(h ρ2)+2)) x

in y {}
First we consider the three concrete components: concrete se-

mantics [[e]] and [[e]] and concrete projection π. The concrete se-
mantics of the two programs are collecting semantics: collections
of values of expressions and variables.

• [[e]]: Collecting semantics [[e]] of the staged original has entries
such as:

x has ‘0
y has ‘(,x + 2) where ,x has ‘0

(run y) has 2

• [[e]]: Collecting semantics [[e]] of the translated version has en-
tries such as:

x has 〈λρ1.0, ∅〉 (* closure value *)
y has 〈λρ2.(h ρ2)+2, {h 7→ 〈λρ1.0, ∅〉}〉
h has 〈λρ1.0, ∅〉

ρ1 has {} (* empty record *)
ρ2 has {}

(y {}) has 2

• π: Projection π that satisfies [[e]] v π[[e]] is straightforward:
it forgets extra bindings (for h, ρ1, ρ2) and projects closure
value 〈λρi, σ〉 to code expression i whose unbox (comma)
expression’s code are those projected from the environment σ.

Projecting the closure values of λR into code values of λS
is essentially identical to the inverse translation in Section 3.3.
That is, π projects closure values as follows:

〈λρ1.0, ∅〉 to ‘0

〈 λρ2.(h ρ2)+2,
{h 7→ 〈λρ1.0, ∅〉}
〉

35 to

24 ‘(,x + 2)
where the ,x position has
‘0

Now we consider the abstract components: ˆ[[e]], ˆ[[e]], and π̂. Note
that the static analysis will compute ˆ[[e]] and project its results by π̂

back in terms of the abstract semantic domain of ˆ[[e]]. The abstract
semantics ˆ[[e]] of the original staged program is only a mathematical
definition that will be referenced in checking the safety of π̂.

• ˆ[[e]]: For the abstract semantics ˆ[[e]] of the original staged pro-
gram e, suppose we abstract a set of code values into a regular
term grammar [17, 8].

In a regular term grammar, each production’s rhs is f(t, ..., t)
where the function symbol f is a code expression label ρi and
each argument term t is either a code expression label or a non-
terminal symbol of a grammar. The n-th argument term is for
the code to be plugged into the n-th unbox expression inside
the code expression ρi.

For example, production rule

S → ρ2(ρ1)

means the set of code values from code expression ρ2 whose
only hole (unbox expression) is plugged by the code value from
code expression ρ1.

• ˆ[[e]]: Suppose our static analysis ˆ[[e]] for the translated unstaged
programs is defined in a flow-insensitive 0CFA manner. That
is, because the analysis will be ignorant about the environment
parts for closures, the best such analysis result for e would be:

x has λρ1.0
y has λρ2.(h ρ2)+2
h has λρ1.0

ρ1 has {}
ρ2 has {}

(y {}) has 2



• π̂: Lastly, abstract projection π̂ cast the above analysis results
ˆ[[e]] back in terms of regular term grammars of ˆ[[e]]. Additionally,

it filters out those for the translation-induced extra variables h,
ρ1, and ρ2.

Of the many ways to safely project 0CFA-closure values
(those corresponding to code) into regular term grammars, a
safe yet naive projection π̂ projects 0CFA-closures as follows:

λρ1.0 to S1 → ρ1

λρ2.(h ρ2)+2 to S2 → ρ2(S)

where the nonterminal S represents all code (S → S1|S2). The
argument term S in the production rule is for the values of the
application expression (h ρ2) that encodes the unbox (comma)
expression inside code expression ‘(,x + 2).

Another more precise projection projects λρ2.(h ρ2)+2 dif-
ferently:

λρ2.(h ρ2)+2 to S2 → ρ2(ρ1)

where the argument term ρ1 in the production rule is from the
analysis result for the h variable, not blindly the “universe”(S)
nonterminal.

Both the two abstract projections π̂ satisfy the safety condi-
tion

α ◦ π ◦ γ v π̂.

Let us check the more precise projection case. Note that the
concretization image (by γ) of a 0CFA-closure λρ.body is the
set of closure 〈λρ.body , σ〉’s for every possible environment
σ for the free variables in body . The free variables’ values
are transitively the concretized images of their abstract values
computed by ˆ[[e]]. Thus, the image of α◦π ◦γ for λρ2.(hρ2)+2
becomes

λρ2.(h ρ2)+2
γ
7−→ {〈λρ2.(h ρ2)+2, {h 7→ 〈λρ1.0, ∅〉}〉}

π7−→ ‘(,x + 2) where ,x has ‘0
α7−→ S → ρ2(ρ1),

which is equivalent to the abstract projection π̂’s image.

5. Related Work
A translation that makes the order of evaluation explicit was previ-
ously given by Davies and Pfenning [14]. The translation in Figure
8 follows the same principles. Their translation, however, is not an
unstaging one. Recently, a program logic for Mini-ML�

e was pre-
sented [2] which precisely captures the operational semantics, yet
cannot be realizable as an automatic static analysis.

An unstaging translation was previously discussed by Kameyama
et al. [23] but has several limitations for our purpose. Their trans-
lation is to System F with tuples, needs type and environment clas-
sifier [37] annotations, supports only two stages. Finally, they did
not prove the translation’s semantics preservation property.

Another idea of translation of staged expressions is given by
Chen and Xi [4]. They convert boxed expressions to first-order ab-
stract syntax expressions in a second-order language with recur-
sion. An advantage of this representation is that inverse translation
becomes straightforward. Chen and Xi use deBruijn indices to rep-
resent program variables inside code templates. This has the prob-
lem that a binding at a higher stage may disappear or occur unex-
pectedly [4]. (Such an example is given by Kim et al. [25, §6.4].)

Our translation is in principle similar to Minamide et al. [30]’s
closure conversion where free variables inside lambdas become
environment loop operations, though their translation is a type-
directed one for conventional unstaged programs.

Our translation is an improvement of [1]: we refined the ad-
min reductions to only two kinds and showed that these two admin

reductions suffice to reach an admin-normal form that can be con-
verted back to the corresponding staged expression using an inverse
translation. The refined proof of semantic preservation and the ex-
istence of the inverse translation is new.

From the perspective of Cousot and Cousot’s abstract interpreta-
tion-based program transformation framework [11], our unstaging
translation can be seen as being derivable by an abstract interpreta-
tion of the staged language λS .

Most static analyses for multi-staged programs are string analy-
ses for programs that generate code as strings (a.k.a. heterogeneous
meta programs), but they are limited to estimate only the shape,
not the semantics, of generated code by using a grammar [7, 29, 5]
or the parsing stack [15]. Such string analyses can not analyze the
semantics of the generated code string.

Multi-staged static type systems [13, 37, 25, 40] and their infer-
ence algorithms are limited forms of staged static analyses. Any ex-
tension to estimate other properties than types (á la effect type sys-
tems [27, 22, 39]) is limited to those that can proceed without an-
alyzing the semantics of the generated code. Existing multi-staged
static type systems do not have to analyze the generated code be-
cause code-generation expression’s type comes with the type of the
generated code.

Kamin et al. [24]’s data flow analysis of multi-staged programs
combines static and dynamic techniques. Our approach is com-
pletely static. Smith et al. [34] presented a static analysis of code
templates. Their language is two-staged and code templates are not
first-class citizens. Variable bindings do not extend beyond the code
templates they are defined in. Our approach does not have this lim-
itation.

6. Conclusion
Static analysis of multi-staged programs is challenging because the
basic assumption of conventional static analysis no longer holds:
the program text itself is no longer a fixed static entity, but rather a
dynamically constructed value.

In this article we have presented a semantic-preserving trans-
lation of multi-staged programs into unstaged ones and a static
analysis framework based on this translation. Our static analysis
approach has three steps: (1) we first apply the unstaging trans-
lation; (2) we apply conventional static analysis to the unstaged
version; (3) we project the analysis results back in terms of the
original staged program. As long as the unstaged static analysis is
correct w.r.t. the unstaged semantics, and the projection is safe w.r.t
the imaginary staged analysis, a sound static analysis for the origi-
nal staged programs is obtained. Because directly defining a staged
static analysis is difficult, our technique makes it possible to use
the knowledge and experience in static analyses of conventional
unstaged programs without having to develop staged analyses from
scratch.

Our semantics-preserving translation handles staging constructs
that have been evolved to be useful in practice (typified in Lisp’s
quasi-quotation): open code as values, unrestricted operations on
references and intentional variable-capturing substitutions. We re-
fer the reader to our companion technical report [6] for the mutable
reference cases and complete proofs.
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